Задача 11 ЕГЭ Найдите точку минимума функции y=10x−ln(x+11)+3.

Задача 11 ЕГЭ Найдите точку минимума функции y=10x−ln(x+11)+3.
Задача 12 профиль
12:00, 29 июнь 2023
511
0

Задача 11 ЕГЭ Найдите точку минимума функции

(Ященко 36 вариантов 2023 Задача 11 из Варианта 4) 

Решение:

Для нахождения производной применим следующее правило дифференцирования

Найдем точки экстремума функции, для этого приравняем производную функции к нулю:

Определим знаки производной функции и изобразим на рисунке поведение функции:

Точка минимума – точка, где производная меняет свой знак с минуса на плюс. В нашем случае точка минимума 10,9.

Ответ: 10,9.



Реклама телеграм канала Занимательная математика

Ctrl
Enter
Заметили ошЫбку
Выделите текст и нажмите Ctrl+Enter
Комментарии (0)
Последние статьи сайта
Задача 18 ЕГЭ Найдите все значения параметра 𝑎, при каждом из которых уравнение √𝑥2 − 𝑎2 =√︀4𝑥2 − (4𝑎 + 2)𝑥 + 2𝑎 имеет ровно один корень на отрезке [0; 1]. Задача 18 ЕГЭ Найдите все значения параметра 𝑎, при каждом из которых уравнение √𝑥2 − 𝑎2 =√︀4𝑥2 − (4𝑎 + 2)𝑥 + 2𝑎 имеет ровно один корень на отрезке [0; 1].
Найдите все значения параметра 𝑎, при каждом из которых уравнение √𝑥2 − 𝑎2 =√︀4𝑥2 − (4𝑎 + 2)𝑥 + 2𝑎 имеет ровно один...
27.04.25
17
0
Задача 18 ЕГЭ Найдите все значения параметра 𝑎, при каждом из которых уравнение √𝑥4 − 16𝑥2 + 64𝑎2 = 𝑥2 + 4𝑥 − 8𝑎 имеет ровно три различных корня. Задача 18 ЕГЭ Найдите все значения параметра 𝑎, при каждом из которых уравнение √𝑥4 − 16𝑥2 + 64𝑎2 = 𝑥2 + 4𝑥 − 8𝑎 имеет ровно три различных корня.
Найдите все значения параметра 𝑎, при каждом из которых уравнение √𝑥4 − 16𝑥2 + 64𝑎2 = 𝑥2 + 4𝑥 − 8𝑎 имеет ровно три...
26.04.25
21
0