Задача 11 ЕГЭ Найдите наименьшее значение функции y=42cosx−45x+35 на отрезке [−3π/2;0].
Задача 12 профиль
Найдите наименьшее значение функции y=42cosx−45x+35 на отрезке [−3π/2;0].
(Ященко 36 вариантов 2023 Задача 11 из Варианта 13)
Решение:
Наименьшее значение функция принимает в одной из точек экстремума. Чтобы найти их, найдем производную функции и приравняем ее к нулю.
Найдем производную функции:
Найдем значение функции на концах заданного отрезка.
Видно, что наименьшее значение функции равно 77.
Ответ: 77.
Последние статьи сайта
Число сочетаний. Треугольник Паскаля.
Статья и презентация по теме "Число сочетаний. Треугольник Паскаля." к 13 уроку по Вероятности и статистике в...
Задача 13 ЕГЭ Решите уравнение 2sin^{2}(\frac{x}{2}-\frac{\pi}{4})\cdot sin^{2}(\frac{x}{2}+\frac{\pi}{4})=cos^{4}x
Решите уравнение 2sin^2(x2-pi4)cdot sin^2(x2+pi4)=cos^{4}x Найдите все корни этого уравнения, принадлежащие отрезку (...