Задача 5 ЕГЭ БАЗА На олимпиаде по русскому языку 160 участников разместили в трёх аудиториях.

Задача 5 ЕГЭ БАЗА На олимпиаде по русскому языку 160 участников разместили в трёх аудиториях.
Задача 5 база
12:00, 30 январь 2024
705
0

На олимпиаде по русскому языку 160 участников разместили в трёх аудиториях. В первых двух удалось разместить по 40 человек, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной
аудитории. 

Решение: 

Формула классического определения вероятности: \( p(A) = \frac{m}{n} \) ,

где m - количество благоприятных исходов (у нас это количество участников в запасной аудитории); n - количество всех исходов (у нас общее количество всех участников). Тогда:

$$p(A) = \frac{m}{n} = \frac{160- (40+40)}{160} = \frac{80}{160} = 0,5$$

Ответ: 0,5



Реклама телеграм канала Занимательная математика

Ctrl
Enter
Заметили ошЫбку
Выделите текст и нажмите Ctrl+Enter
Комментарии (0)
Последние статьи сайта
Задача 18 ЕГЭ Найдите все значения параметра 𝑎, при каждом из которых уравнение √𝑥2 − 𝑎2 =√︀4𝑥2 − (4𝑎 + 2)𝑥 + 2𝑎 имеет ровно один корень на отрезке [0; 1]. Задача 18 ЕГЭ Найдите все значения параметра 𝑎, при каждом из которых уравнение √𝑥2 − 𝑎2 =√︀4𝑥2 − (4𝑎 + 2)𝑥 + 2𝑎 имеет ровно один корень на отрезке [0; 1].
Найдите все значения параметра 𝑎, при каждом из которых уравнение √𝑥2 − 𝑎2 =√︀4𝑥2 − (4𝑎 + 2)𝑥 + 2𝑎 имеет ровно один...
27.04.25
54
0
Задача 18 ЕГЭ Найдите все значения параметра 𝑎, при каждом из которых уравнение √𝑥4 − 16𝑥2 + 64𝑎2 = 𝑥2 + 4𝑥 − 8𝑎 имеет ровно три различных корня. Задача 18 ЕГЭ Найдите все значения параметра 𝑎, при каждом из которых уравнение √𝑥4 − 16𝑥2 + 64𝑎2 = 𝑥2 + 4𝑥 − 8𝑎 имеет ровно три различных корня.
Найдите все значения параметра 𝑎, при каждом из которых уравнение √𝑥4 − 16𝑥2 + 64𝑎2 = 𝑥2 + 4𝑥 − 8𝑎 имеет ровно три...
26.04.25
35
0