Задача 11 ЕГЭ Найдите наибольшее значение функции y=7ln(x+5)−7x+10 на отрезке [−4,5;0].

Задача 11 ЕГЭ Найдите наибольшее значение функции y=7ln(x+5)−7x+10 на отрезке [−4,5;0].
Задача 12 профиль
12:00, 23 июль 2023
195
0

Найдите наибольшее значение функции y=7ln(x+5)−7x+10 на отрезке [−4,5;0].

(Ященко 36 вариантов 2023 Задача 11 из Варианта 28) 

Решение:

Наибольшее значение функция принимает в одной из точек экстремума. Чтобы найти их, найдем производную функции и приравняем ее к нулю.

Найдем производную функции, для этого воспользуемся правилом дифференцирования

Определим знаки производной функции и изобразим на рисунке поведение функции на отрезке [4,5;0]

Получилось, что наибольшее значение функции в точке 4. Найдем значение функции в данной точке:

y(4)=7ln(4+5)74+10=38.

Ответ: 38.



Много интересного в телеграм (нажимай на название):
👉1. Занимательная математика
👉2. Занимательная началка
👉3. Занимательный английский
👉4. Занимательный космос
👉5. Занимательные путешествия
👉6. Фильмы, сериалы, мультфильмы
👉7. Аниме
👉8. Аирдропы криптовалюты
👉9. СВО

Подписывайтесь, дорогие друзья
Ctrl
Enter
Заметили ошЫбку
Выделите текст и нажмите Ctrl+Enter
Комментарии (0)
Последние статьи сайта
Задача 8 ЕГЭ На рисунке изображён график \(y=f'(x)\) - производной функции \(f(x)\), определённой на интервале \( (-9;3) \). В какой точке отрезка \( [-7;-5] \) Задача 8 ЕГЭ На рисунке изображён график \(y=f'(x)\) - производной функции \(f(x)\), определённой на интервале \( (-9;3) \). В какой точке отрезка \( [-7;-5] \)
На рисунке изображён график (y=f'(x)) - производной функции (f(x)), определённой на интервале ( (-9;3) ). В какой...
18.05.24
458
0
Задача 8 ЕГЭ На рисунке изображён график функции \(y=f(x)\). На оси абсцисс отмечено восемь точек: \(x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8}\) Задача 8 ЕГЭ На рисунке изображён график функции \(y=f(x)\). На оси абсцисс отмечено восемь точек: \(x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8}\)
На рисунке изображён график функции (y=f(x)). На оси абсцисс отмечено девять точек:...
17.05.24
95
0