Задача 5 ЕГЭ Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,43 при каждом отдельном выстреле. 0,89

Задача 5 ЕГЭ Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,43 при каждом отдельном выстреле. 0,89
Задача 5 профиль
12:00, 12 апрель 2024
353
0

Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,43 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,89?

Решение:

Вероятность попадания в мишень равна 0,43. Вероятность противоположного события  — промаха  — равна 1 − 0,43  =  0,57. Заметим, что вероятность попадания с n-го раза равна 1 − 0,57n. Таким образом, задача сводится к решению неравенства \( 1- 0,57^n \geq 0,89\)

$$0,57^n \leq 0,11$$

При n  =  2 получаем \( 0,57^2 = 0,3249\). При n  =  3 получаем \( 0,57^3 = 0,185193\). При n  =  4 получаем \( 0,57^4 = 0,10556001\). Таким образом, ответ  — 4.

Ответ: 4.



👉 Полезные ссылки

Ctrl
Enter
Заметили ошЫбку
Выделите текст и нажмите Ctrl+Enter
Комментарии (0)
Последние статьи сайта
Задача 5 ЕГЭ Ковбой Джон попадает в муху на стене с вероятностью 0,9 0,2 10 3 Задача 5 ЕГЭ Ковбой Джон попадает в муху на стене с вероятностью 0,9 0,2 10 3
Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон...
07.10.24
65
0
Формула полной вероятности Формула полной вероятности
Статья и презентация по теме "Формула полной вероятности" к 10 уроку по Вероятности и статистике в 10...
06.10.24
111
0